A NOVEL AMINATION OF ISOQUINOLINIUM SALTS <u>VIA</u> NUCLEOPHILIC SUBSTITUTION REACTION

Shunsuke Naruto*, Hiroyuki Mizuta and Haruki Nishimura Research Laboratories, Dainippon Pharmaceutical Co., Ltd. Enoki-cho, Suita, Osaka 564, Japan

(Received in Japan 10 March 1976; received in UK for publication 22 March 1976)

The Smiles rearrangement at the C_9 -position of protoberberinium salt¹ prompted us to examine a substitution reaction at that position. We now wish to report a new and unusual amination of 6- or 8-alkoxyisoquinolinium salts. Treatment of such salts with primary amines produces 6- or 8-aminoisoquinolinium derivatives. The reaction proceeded in refluxing ethanol or in refluxing methanol for 2 to 72 hours using 4 to 40 folds moles of amine, e.g., a mixture of dehydrocorydaline chloride(la)(0.2 g), ethanolamine(2 ml) and ethanol(6 ml) was refluxed for 2 hr to give 9-(2-hydroxyethyl)amino derivative(2a)², mp 242-245°(dec), in 90% yield, whose bromide(2b), mp 233-236°(dec), was identified with the Smiles rearrangement product(2b)¹. Other examples of this reaction are shown in TABLE. Using benzylamine, 2,3,10,11-tetramethoxy-5,6-dihydrodibenzo[a,g]quinolizinium chroride(3), mp 220-222°(dec), obtained from dl-xylopinine(5a)³ gave 11-benzylamino derivative(4), mp 245-250°(dec). Reduction of 4 with sodium borohydride in methanol followed by catalytic debenzylation led to the known 11-aminotetrahydroprotoberberine derivative(5b)⁴, mp 225-228°.

The C_9 - and C_{11} -positions of protoberberinium salts are respectively corresponding to the C_9 - and C_6 -positions of isoquinolinium salts($\underline{6}$) being as an essential partial structure for this amination. These positions are activated by the presence of C=N= group and the C_6 -position of $\underline{6}$ is considered to be in less steric hindrance than the C_9 -position of $\underline{6}$.

Pr:CH2CH2CH3 By:CH2C6H5

<u>la-A</u> i: demethylation ii: amination

To test the generality of this amination, N-methylpapaverinium iodide(7a) was treated with propylamine. 6-Propylamino derivative(7c), mp 210-215°(dec), was obtained in 90% yield. Other amino-papaverine derivatives obtained by this route are indicated in TABLE. Amination of 0-methyltarconine chloride(8) with propylamine afforded predominantly one product(9), characterized as picrate, mp 166-168°, $v_{NH}^{CHCl_3}$ 3320 cm⁻¹, $v_{OH}^{CHCl_3}$ 3400 cm⁻¹, in 85% yield, in which the methylenedioxy group of 8 was cleavaged to form an ortho-hydroxypropylamino group.

On the other hand, an attempted amination of \underline{la} with pyrrolidine gave 9-desmethyldehydro-corydaline(\underline{lg})¹ in 90% yield besides N-methyl-pyrrolidine whose picrate was identified with an authentic sample. Other secondary amines and \underline{tert} -butylamine reacted with \underline{la} as well as pyrrolidine. Using \underline{sec} -butylamine, \underline{la} afforded two products, 9- \underline{sec} -butylamino derivative($\underline{2c}$), mp 238-240°(dec)(yield, 20%) and \underline{lg} (64%). From these results, it depends on the steric factor of the using amine whether the nucleophiles attack the C_9 -position or the CH_3 (Me)-group of C_9 -OMe group of \underline{la} as shown in \underline{la} - \underline{A} . Amination of $\underline{7a}$ with pyrrolidine gave 6-pyrrolidino derivative($\underline{7g}$), mp 235-238°(dec), in 45% yield because of the less steric hindrance at that position as described above.

In a related experiment, norcoralyne chloride $(\underline{10})^3$ was refluxed in methanol with benzylamine for 72 hours to generate predominantly one product $(\underline{11})$, mp 245-247°(dec), in 85% yield. Reduction of $\underline{11}$ as in the case of $\underline{4}$ afforded 5b confirming the aminated position.

Further investigation on this amination is in progress.

10 R=0Me

11 R=NHCH2C6H5

TABLE 2

Starting Salt	Amine	Solvent/ Reaction	Time	Product	Yield	mp °C(dec)
<u>la</u>	H2NCH2CH2NH2	EtOH/ 2	hr	<u>2d</u>	90%	187-190
<u>la</u>	PrNH ₂	MeOH/ 3	hr	<u>2e</u>	90%	214-215
<u>1a</u>	ByNH ₂	EtOH/ 5	hr	<u>2f</u>	86%	227-228
<u>1a</u>	ByCH2NH2	EtOH/ 4	hr	<u>2g</u>	87%	205-206
<u>1b</u>	ByNH ₂	EtOH/ 2	hr	<u>2h</u>	85%	186-187
<u>1c</u>	H2NCH2CH2OH	Et0H/50	hr	<u>2i</u>	60%	250-255
<u>1d</u>	ByNH ₂	MeOH/72	hr	<u>2j</u>	60%	269-271
<u>1e</u>	H2NCH2CH2OH	EtOH/ 3	hr	<u>2b</u>	67%	233-236
<u>1f</u>	H2NCH2CH2OH	EtOH/ 4	hr	<u>2b</u>	67%	233-236
<u>7a</u>	H2NCH2CH2OH	Et0H/ 7	hr	<u>7d</u>	90%	215-217
<u>7a</u>	ByNH ₂	EtOH/ 6	hr	<u>7e</u>	90%	225-230
<u>7b</u>	ByNH ₂	EtOH/ 8	hr	<u>7f</u>	70%	140-145

References

- 1) S. Naruto, H. Mizuta, J. Nakano and H. Nishimura, <u>Tetrahedron Letters</u>, preceding paper in this issue.
- All new compounds had analytical data consistent with the assigned structures and have been additionally characterised as tetrahydro-derivatives after reduction with sodium borohydride. The yields quoted are for pure products.
- 3) T. Kametani, M. Takeshita, F. Satoh and K. Nyu, Yakugaku Zasshi, 84, 478(1974).
- 4) S. Ishiwata and K. Itakura, <u>Chem. Pharm. Bull.(Tokyo)</u>, <u>18</u>, 763(1970). Lit. mp 225-228°. The spectral data of <u>5b</u> were identical with those of the reported data.
- 5) J. Knabe, Arch. Pharm., 293, 121(1960).